
Master’s Project Report [2023-24 WS]

SAC-N -GMM: Robot Skill Refining and Sequencing for Long-Horizon
Manipulation Tasks

Akshay L Chandra, Iman Nematollahi, Tim Welschehold
{lagandua, nematoli, twelsche}@cs.uni-freiburg.de

Abstract

Despite access to expert data, most long-horizon
imitation-learning (IL) agents suffer from distribution
shifts, compounding errors, and expert dependency. Sev-
eral previous works show that refining IL agents in the
world with reinforcement learning (RL) alleviates some of
these problem by making the agents more robust to noisy
perception and stochasticity in dynamics with much help-
ful real-world exposure. SAC-GMM [8] does this efficiently
by first learning a task from demonstrations with a classi-
cal robotics technique (e.g., Gaussian Mixture Model) and
then refines it with a deep RL (Soft Actor-Critic) agent
with sparse task-completion rewards. One could further
dampen the side effects of long-horizon IL agents by break-
ing down complex tasks into short-horizon skills. This sim-
plifies the learning goal into a hierarchy of agents, i.e.
high-level planning agent (skill sequencer) and low-level
control agent (skill executor). To this end, we propose
the Soft Actor-Critic-N -Gaussian Mixture Model (SAC-N -
GMM), a novel hybrid RL approach that learns to simulta-
neously refine and sequence a repertoire of low-level skills
to perform numerous combinations of long-horizon tasks.
Our approach extends SAC-GMM (1) by learning N low-
level robot skills with Riemannian Manifold GMMs that
learn both robot positions and orientations (2) by learn-
ing a single RL agent to refine and sequence multiple
manifold-aware GMM skills. Extensive evaluations in the
CALVIN simulation environment demonstrate that our ap-
proach leverages high-dimensional sensory data, minimal
expert demonstrations, minimal physical interactions, and
sparse task-completion rewards efficiently to achieve supe-
rior long-horizon task performance compared to baselines.
Code is available at https://github.com/acl21/
sac_n_gmm

1. Introduction & Related Works
Learning robust manipulation tasks, either zero-shot or

one-shot, is a trait that benchmarks human intelligence.

Figure 1. SAC-N -GMM RL Fine-Tuning Pipeline. In (a), an
Actor conditioned on a skill vector (unique to a given skill) pre-
dicts refinements in Riemannian Manifold GMM parameter space.
These refinements adapt the chosen skill’s GMM before deploying
in the environment. (b) highlights Critic learning in a supervised
fashion.

In this context, sample efficiency is a good indicator of
how good an IL approach is. While deep neural network-
based IL agents may be good at predicting actions directly
from pixel observations of the world, they require massive
amounts of expensive data to show any promising perfor-
mance. Under these circumstances, adopting classical dy-
namical systems to learn IL agents may be suitable. Despite
their strengths, such as sample efficiency, robustness to en-
vironmental perturbations, and provably reliable behaviour,
they fail to tackle the complexities of real-world robotics,
where an accurate state of the environment is unavailable,
and the environment observations are too high-dimensional
and impossible to model. Previous works like SAC-GMM
[8] addressed this issue by marrying a classical dynamical
learning system with a deep RL agent. SAC-GMM demon-
strated with their real-world experiments that it is possible
to achieve sample efficiency by learning a GMM in the low-
dimensional trajectory space and then refining the GMM in

1

https://github.com/acl21/sac_n_gmm
https://github.com/acl21/sac_n_gmm

its parameter space with a deep RL agent. The deep RL
agent conveniently allows the method to work with rich,
high-dimensional observations of the environment.

Most IL agents also suffer from distribution shifts
and compounding errors during rollouts. These issues
are further exacerbated when dealing with long-horizon
tasks. Previous works have addressed the long-horizon task
learning problems by decomposing tasks into temporally-
extended skills. This creates a natural hierarchy of IL
agents, i.e., a high-level planning agent for skill sequenc-
ing and a low-level control agent for skill execution in the
environment. We adopt this hierarchy in our work as it al-
lows for a clear division of labour and responsibility be-
tween agents, simplifying the complexities of long-horizon
task learning to some extent.

Fine-tuning IL agents with model-based RL is one alter-
native paradigm that achieves sample efficiency - by learn-
ing a policy and a model of the world. Access to a model
allows planning within itself, ultimately reducing the real-
world interactions needed to learn high-performing policies.
Several works have also relied on unlabeled offline robot
play data to learn a model. [5] describes play data as a
”continuous logs of low-level observations and actions col-
lected while a human teleoperates the robot and engages in
behaviour that satisfies their own curiosity”. Despite the
lack of labels, robot play data is often full of rich physi-
cal environment interactions and tends to span states of the
world magnitudes more than expert data in a standard table-
top setting. To this end, Skimo leverages the offline play
dataset to first learn a model of the world, then learn hi-
erarchical policies (high-level skill predictor and low-level
skill executor) by planning with the model, enabling supe-
rior long-horizon task completion compared to their model-
free alternatives. In this setting, the high-level agents learn
to predict skill vectors in a high-dimensional latent space,
which are then passed to a low-level agent to predict envi-
ronment actions. The skill vectors learned by the high-level
agent are unreadable, abstract and implicit.

We argue and show through our experiments that decom-
posing tasks into readable explicit skills instead of learn-
ing implicit tasks can be a powerful tool, surpassing even
the model-based methods in sample efficiency. We hy-
pothesize that learning to stitch known explicit skills can
be more sample-efficient than learning implicit skills first
and then learning to stitch them with rewards. To this end,
we extend SAC-GMM (1) by first learning a repertoire of
temporally-extended explicit skills that compose together to
form long-horizon tasks (2) by learning skills with Rieman-
nian Manifold GMMs (RM-GMMs) to model trajectories of
both robot positions and orientations, on a Eucliean × Unit-
Quaternion product manifold (3) by introducing a novel and
intuitive way of refining RM-GMMs (4) by learning a single
SAC agent to simultaneously refine and sequence multiple

skills at once. A single agent trained with our method per-
forms superior to baselines on several tasks, an advantage
of learning to sequence explicit skills. This allows us to
delegate the role of high-level planning agent to a large or a
vision language model; we leave this thread to future work.
Note that we report the task performance of our approach
on all possible skill pairs (see Section 4).

2. Preliminaries

Our method naturally breaks into two phases, first learn-
ing a repertoire of robot skills from expert demonstrations
and then fine-tuning the robot skills with RL. Following
SAC-GMM’s approach, we consider robot skills directly
defined in robot trajectory space. Learning a dynamical
system like a Gaussian Mixture Model (GMM) exploits the
trajectory space’s structure sample efficiently compared to
neural network-based alternatives. We later refine these
structured models through the robot’s physical interactions
in the world. Specifically, we are interested in learning the
GMMs on Riemannian manifolds to model both robot po-
sitions and orientations. Riemannian manifolds are smooth,
non-euclidean spaces where one cannot directly use Eu-
clidean operations, such as vector sum or scalar multipli-
cation. Zeestraten et al. [11] showed that one can learn
robot skills from demonstrations on Riemannian manifolds
by performing Euclidean operations on Euclidean tangent
spaces instead. To that end, [11] extended Expectation
Maximization (EM) algorithms to Riemannian manifolds.
We use [11]’s official implementation in this work and refer
the readers to our Section 3 and Section II of [11] for a more
detailed discussion on Riemannian manifolds.

With access to EM algorithms that model and regress
Gaussians on Riemannian manifolds, we can now consider
robot skill as trajectories in 7D space, i.e. R3 × H, or
as points lying on a 7D product manifold. We denote a
trajectory by Ξ = {⟨ξpt , ξot ⟩}Tt=1 where ξpt ∈ R3 is the
robot’s geometric position in Euclidean space and ξot ∈ H
is the robot’s geometric orientation (as a quaternion1) in
Quaternion space, at time step t. Moreover, each execu-
tion of a robot skill in the environment induces observa-
tions, O = {ot}Tt=1, of the robot’s geometric poses as well
as high-dimensional static and gripper images, depth maps,
and tactile measurements. The robot’s goal is to respond
to these high-dimensional observations by steering through
the geometric route an expert would take. The geomet-
ric route, in essence, is the space spanned by the set of D
demonstrations X = {Ξd}Dd=1, trajectories collected by an
expert through robot teleoperation.

Our goal is to first learn a repertoire of robot skills (RM-
GMMs), where each skill is a parametric function that maps

1Quaternions must be of unit norm to represent valid orientations. From
here on, we will use quaternion to refer to unit quaternions.

2

the robot’s position to its next position and orientation in
time, forming a state-transitioning dynamical system. For
each skill,

P(X) = pθ(ξ
p
t) = ⟨ξpt+1, ξ

o
t+1⟩ (1)

where θ refers to RM-GMM’s parameters. We learn
a repertoire of N such skills {pθn}Nn=1. Note that this
part only requires trajectories of robot poses and does not
require high-dimensional observations, as they are infea-
sible for GMMs to parameterize. In the refining phase,
we learn a deep RL policy with sparse task comple-
tion rewards. Conditioned on the robot’s pose ⟨ξpt , ξot ⟩,
the environment’s high-dimensional observations ot and a
unique skill identifier ν̄n (e.g., a one-hot vector), the policy
learns to predict refinements in skill n’s parameter space –
πϕ(ξ

p
t , ξ

o
t ,ot, ν̄n) = ∆θn. This allows a single deep RL

policy to learn refinements for multiple skills.

3. SAC-N -GMM
The proposed Soft Actor-Critic-N-Gaussian Mixture

Models (SAC-N -GMM), N referring to the number of
skills, is divided into two distinct phases - in (I) we learn
a dynamical system from a few demonstrations and in (II),
we refine these dynamical systems with a skill-conditioned
actor learned with the soft actor-critic algorithm through in-
teractions with the environment.

Phase I: Learning a Repertoire of Robot Skills

A dynamical system typically models how a system
evolves over time based on its current state (and often, op-
tionally, some other input). In the context of robot skill
learning, Gaussian Mixture Models could be used to model
a state-evolving dynamical system of robot joint positions,
velocities, end-effector poses and even environmental vari-
ables [4, 8]. In this work, we formulate a robot skill as a
control law driven by an autonomous dynamical system, de-
fined by the robot pose:

⟨ξpt+1ξ
o
t+1⟩ = pθ(ξ

p
t) + ϵ (2)

where pθ is a robot skill, a parametric, non-linear, steady,
continuously differentiable policy, and ϵ is a zero-mean
additive Gaussian noise. Learning pθ then becomes a
straightforward regression problem and can be modelled
by GMMs. Precisely, given a set of expert demonstrations
X for a robot skill, we first estimate the joint probability
density P(ξpt , ξ

p
t+1, ξ

o
t+1) as a mixture of Gaussians on a

10-dimensional product manifold M i.e., R6 × H. Similar
to GMMs in Euclidean space, an RM-GMM is defined by
weighted sums of Gaussians on M, so a robot skill pθ is
parameterized by θ = {πk, µk,Σk}Kk=1 where πk are the
priors (ΣK

k=1πk = 1), µk the mean matrix and Σk the co-
variance matrix of the k-th Gaussian on M.

With an estimate of a joint probability, one can easily
obtain future robot pose ⟨ξpt+1, ξ

o
t+1⟩ conditioned on cur-

rent robot position ξpt with the help of Riemannian manifold
Gaussian Mixture Regression (RM-GMR) [11]. RM-GMR
allows us to obtain the closed-form conditional distribution
P(ξpt+1, ξ

o
t+1|ξ

p
t) for output Gaussians on a sub-Manifold

Ms i.e., ∈ R3 × H. Our robot skill predicts the next robot
pose, given the current robot position. Updating ξpt with
previous predictions allows us to iteratively generate full
robot trajectories. We learn a repertoire of N such robot
skills this way {pθn}Nn=1. For a detailed explanation of us-
ing both Euclidean GMMs and RM-GMMs as dynamical
systems for imitation learning, we refer the readers to [11].

Phase II: Refining the Robot Skills with Reinforce-
ment Learning

With access to a repertoire of robot skills {pθn}Nn=1, we
can now interact with the world and learn a single neural
network-based policy that can refine all N robot skills. Like
SAC-GMM, we formulate this refinement as an RL problem
in which the agent must learn to modify several GMM robot
skills in their parameters space with access to sparse skill-
completion rewards. Concretely, our RL problem can be
defined as a policy search in a Partially Observable Markov
decision process (POMDP), defined by the following – an
observation space O, a state space S and an action space
A. In this phase, our agent receives high-dimensional sen-
sory measurements such as RGB images (optionally cou-
pled with depth maps, tactile measures, etc.), first encoded
to a latent representation space z by an autoencoder. The
latent z concatenated with the robot end-effector position
ξp and a one-hot skill vector ν̄n form our continuous state
space S. The continuous action space A consists of the
refinements we want to make to skill n in its parameters’
space ∆θ. The environment emits a sparse non-zero reward
only when the robot executes the skill correctly. Namely,
at time t, if st is the environment’s inferred state, at is the
agent’s action, zt is latent representation of environment ob-
servation, ν̄ is the skill vector corresponding to a target skill
to be refined, ⟨ξpt , ξot ⟩ is the robot end-effector’s position
and orientation respectively, then for a skill N :

st : = {ξpt , ξot , zt, ν̄N},
at : = ∆θN = Flatten({∆πk,∆µk,∆Σk}Kk=1)

∴ ∆θN = πϕ(at|st)
(3)

where πϕ is the skill-refinement policy. We choose the
soft actor-critic (SAC) algorithm [1] as our RL framework.
SAC is an off-policy actor-critic method that optimizes
for maximum expected total reward while also maximiz-
ing the actor’s entropy. This interplay between reward and

3

entropy maximization forces SAC to explore sufficiently
while learning high-performing stochastic policies. SAC’s
sample efficiency and stability align well with our project
goals; hence, it is a good choice for our projects. SAC’s
objective is as follows:

J(πϕ) =

T∑
t=0

γtE(st,at)∼ρπϕ
[r(st, at) + αH(πϕ(·|st))]

(4)
where α is a tunable penalty parameter on entropy term -
it regulates the stochasticity of πϕ. Our SAC agent stores
{st, ot, at, rt.st+1, ot+1}Tt=1 transition tuples in the replay
buffer D. The replay buffer aids in joint learning of an au-
toencoder qω , the policy πϕ, two Q-functions Qφ1

and Qφ2

and their target functions. We learn an autoencoder to map
high-dimensional observations ot to a low-dimensional la-
tent representation zt, with an L2 penalty on zt to encour-
age robust feature learning. All networks are trained with
mini-batches sampled from the replay buffer and the gra-
dients are backpropagated with stochastic gradient descent,
minimizing the following losses:

L(ω,D) = Eot∼D

[
log qω(ot|zt) + λz||zt||2

]
L(φi,D) = E(st,at)∼D

[
||Qφi

(st, at)−Qtarget(st, at)||2
]

L(ϕ,D) = E(st∼D,at∼πϕ)

[
α log πϕ(at|st)− min

i=1,2
Qφi

(st, at)
]

(5)

Where Qtarget is the target for the Q functions and is
computed using the immediate reward, the value estimate of
target Q network and an entropy regularization term. Note
that the SAC agent predicts refinements conditioned on st,
which contains significantly more information about the en-
vironment than the RM-GMMs, through latent representa-
tion zt. Also, the SAC agent knows which skill to refine
through the one-hot skill vector ν̄n.

Skill Refinement

The SAC agent πϕ receives the current state st =
{ξpt , ξot , zt, ν̄N} and predicts refinements as action ∆θN

conditioned on st. Recall from Phase I, our RM-GMMs
learn a joint probability density P(ξpt , ξ

p
t+1, ξ

o
t+1) as a mix-

ture of Gaussians on a 10-dimensional product manifold
M i.e., R6 ×H. The predicted refinements ∆θN , however,
are in Euclidean space2. How one can refine Gaussians ly-
ing on such a product manifold with Euclidean refinements
is unclear. Through trial and error, we learned that splitting
the 10-dimensional product manifold M into two manifolds

2In SAC-GMM, the authors learned GMMs entirely in Euclidean space,
so the refinements were straightforward

and refining them separately a posteriori yields stable Gaus-
sians in M. In that context, we split M into – a Euclidean
Manifold ME corresponding to ξpt and ξpt+1 (first six di-
mensions) and a Quaternion Manifold MQ corresponding
to ξot+1 (last four dimensions).

Therefore, we naively refine all elements in θN corre-
sponding to ME with the following update rule:

θNnew[i] → θN [i] + ∆θN [i] ∀i ∈ E (6)

where E is a set of all the indices that correspond to ele-
ments relevant to ξpt and ξpt+1 in θN . Note that this update
rule only applies to elements form {πk, µk}Kk=1. To update
elements from {Σk}Kk=1, we must ensure the updated Σk is
a valid symmetric positive definite matrix. This is out of
the scope of this project. We only refine {πk, µk}Kk=1 in our
experiments.

To refine Gaussians on MQ, we turn to a fundamental
manifold mapping operation – the exponential map. For
a d-dimensional smooth manifold M, there exists a tan-
gent space TpM at each point p ∈ M. The exponential
map Expg(·) : TgM → M is a distance preserving map
between the tangent space and the manifold. As shown in
Figure 2, Expg(p) maps p to p so that p lies on the geodesic
through g with direction p3. Once again, we refer the read-
ers to [11] for a more detailed discussion.

The distance preserving Exp operation allows us to indi-
rectly perform computations on the manifold by navigating
in the tangent space. To that end, we assume that the rel-
evant elements of ∆θN span the tangent spaces at points
{µk[i : j]}Kk=1 where [i : j] is a section of µk that cor-
responds to ξot+1 on MQ. πϕ essentially searches for the
best vectors in the tangent spaces at points {µk[i : j]}Kk=1

on MQ. The update rule for a Gaussian K’s mean is as
follows:

µk[i : j]new → Expµk[i:j]
(∆µk[i : j]) (7)

This quaternion mean refinement is a novel contribution
of this work. The update rule for quaternion covariances in
Σk is out of this project’s scope. In all our experiments, we
only refine quaternion means.

Stochastic Skill-Pretraining (SSP)

While RM-GMM robot skills are data-efficient, they can
be brittle when queried on out-of-training-distribution sam-
ples. The goal of SAC-N -GMM is to refine and sequence
many robot skills. Therefore, a given RM-GMM robot skill
pθn should be robust to robot position queries ξpt unseen in
its own expert trajectories. One way to address this prob-
lem is to train πϕ to refine each skill, starting from every
other skill’s final timestep robot position. More generally,

3The logarithmic map is the inverse mapping, and it exists if there is
only one geodesic through g and p

4

Figure 2. The exponential and logarithmic map between the man-
ifold S∈ and its tangent space at point }. Figure is taken unmodi-
fied from [11].

we can train πϕ to refine all RM-GMM robot skills from any
feasible point in the environment. In that context, we first
pretrain πϕ to refine all robot skills by randomly initializing
the robot end-effector in any feasible point in the environ-
ment. Precisely, both the one-hot skill vector ν̄n and the
robot end-effector position are randomly sampled. We call
this Stochastic Skill-Pretraining (SSP) a key contributor to
the skill-sequencing ability of SAC-N -GMM; see Section
4 for details. Figure 3 shows such randomly sampled robot
positions in the environment. Note that a reset-free RL cur-
riculum similar to [7] can be implemented in this scenario,
but we intentionally ignore it in this work. Also, once pre-
trained with SSP, we can easily fine-tune πϕ and the obser-
vation encoder on a single task with sparse task-completion
rewards.

4. Experiments
We evaluate SAC-N -GMM’s ability to refine and stitch

robot skills in simulation. The goals of the experiments are
to verify (i) if our hybrid RL agent is capable of refining
and sequencing multiple skills in realistic noisy environ-
ments, (ii) if learning a single agent contributes to a lower
exploration budget, (iii) if quaternion refinement is neces-
sary for high performance (iv) if our agent’s performance
scales consistently in skills and physical interactions.

4.1. Setup

We investigate SAC-N -GMM’s performance on four
table-top robot skills in CALVIN’s Env D [6]: Open Drawer
(A), Turn On Lightbulb (B), Move Slider Left (C) and
Turn on LED (D). The environment signals a sparse skill-
completion reward – for A when the drawer is opened at
least 12 cm from its initial position, for B when the light-
bulb turns on, for C when the slider moves 15 cm to the
left from its initial position, and for D when the LED turns
on. We define a single robot task as a unique combination
of four skills. Therefore, skills A, B, C, D could permute
to form 24 unique tasks. However, we limit all our experi-
ments to the following eight tasks: ABCD, BACD, CBAD,

Figure 3. Spheres in magenta show randomly sampled robot posi-
tions from multiple viewing angles in CALVIN’s Env D. For ref-
erence, spheres in red show average last timestep robot positions
of ABCD skills.

DCBA, ACBD, BADC, CADB, DACB. These eight tasks
are chosen so that all possible combinations of skill pairs
appear together. E.g., skill A appears after B, C, D and skill
B appears after A, C, D and so on. To that end, we report
the number of successful skills executed while performing
a task.

4.2. Baselines

We compare SAC-N -GMM against several sample effi-
cient baselines:

TD-MPC: In TD-MPC [3], an environment model, a
value function and an actor are simultaneously learned. TD-
MPC uses CEM [9] to plan within the model with the value
functions as guidance. This imaginative exploration allows
TD-MPC to sample efficiently and take only high-reward-
producing actions in the environment. TD-MPC learns a
single-step dynamics model.

DreamerV3: DreamerV3 [2] is another model-based
RL method similar to TD-MPC. However, it differs sig-
nificantly in several carefully taken modelling choices for
state estimation and offline planning. The actor and critic
are learned entirely in imagination. Similar to TD-MPC,
DreamerV3 also learns a single-step dynamics model.

Skimo: In Skimo [10], a model is first learned from a
large unlabeled robot play data, and the actor and critic are
learned online in the second phase with environment inter-
actions. Skimo also uses hierarchical agents; a high-level
planning agent predicts a latent skill, while a low-level con-
trol agent predicts robot actions conditioned on the latent
skill. In contrast to TD-MPC and DreamerV3, Skimo learns
a multi-step dynamics model and actor. For a fair compari-
son, we set multi-steps similar to SAC-N -GMM’s – 16.

5

Method Wall-Clock Runtimes (Hours)
SAC-N -GMM 8.5
N -SAC-GMM 2.5× 4 = 10

N -GMM -
Skimo (Vector) 20 + 2× 8 = 36

DreamerV3 (Vector) 2× 8 = 16
DreamerV3 (Static) 10× 8 = 80
TD-MPC (Vector) 23.5× 8 = 188

Table 1. Wall-Clock runtimes (in hours) taken to run a single seed
of experiments on one NVIDIA GeForce RTX 2080 Ti.

N -SAC-GMM: We train N different SAC-GMMs, one
for each robot skill trained on the same expert trajectories.
Note that SAC-GMM was originally designed to handle
only single skills. We integrate SAC-GMM’s pipeline with
our SSP and quaternion refinement for a fair comparison.

N -GMM: In this, raw, unrefined RM-GMM robot skills
are used in the environment during a task’s rollout.

Skimo and TD-MPC underperformed severely when
trained on RGB data, so we only reported their results of ex-
periments with state vectors (proprioception + scene) as in-
put. DreamerV3 surprisingly underperformed when trained
on both static and gripper images as input; however, it
worked reasonably well when just static images were pro-
vided as input, so we only reported those results. In all our
experiments, we train and report SAC-N -GMM with only
gripper images as input. Our early experiments showed that
the SAC-N -GMM variant trained with both static and grip-
per images underperforms marginally compared to the only
gripper variant, so we ignore it entirely.

4.3. Results

Quantitative results of the average number of skills over
50 trials performed per two different random seeds are
shown in Figure 4. Our single SAC-N -GMM-SSP-500K
agent, which is pre-trained with SSP with 500K environ-
ment interactions, successfully outperforms all baselines in
six out of eight tasks without ever having to fine-tune on in-
dividual tasks. Our SAC-N -GMM-250K agent pre-trained
with SSP with half as many environment interactions out-
performs all baselines in seven out of eight tasks. Note
that all baseline methods were explicitly trained to fine-tune
each task separately. However, in our case, a single SAC-
N -GMM pre-trained with SSP performs well on seven of
eight tasks. This makes our wallclock runtimes magnitudes
lower than the baselines. Table 1 compares the wallclock
times taken to obtain results in Figure 4 on a single NVIDIA
GeForce RTX 2080 Ti.

5. Ablations

In ablations, we evaluate and quantify how much SSP
and Quaternion refinement contribute to SAC-N -GMM’s
performance. We also discuss task-specific fine-tuning to
show that SAC-N -GMM can fine-tune. At the end, we eval-
uate if SAC-N -GMM can scale up in the number of skills
and the environment interactions.

5.1. Role of SSP and Quaternion Refinement

In our early experiments, directly doing Phase II on in-
dividual tasks with either skill or task completion rewards
yielded poor results. Despite several hyperparameter tuning
attempts, SAC-N -GMM could not stitch even two skills to-
gether. Introducing SSP into the pipeline changed that. We
want to emphasize that SSP plays a major role in SAC-N -
GMM’s performance. As evidenced in Figure 4, SSP alone
can allow SAC-N -GMM to perform well on most evalua-
tion tasks.

Figure 6 compares the performance of SAC-N -GMM
with and without quaternion refinement. The difference,
while marginal, across eight tasks makes it clear that quater-
nion refinement contributes to better overall task perfor-
mance in expectation.

5.2. Task-Specific Fine-Tuning

In Figure 4, we can see that SAC-N -GMM is unable to
convincingly solve tasks BDCA and ACBD. Upon closer
examination of policy rollouts, we noticed that SAC-N -
GMM struggled to sequence skills B and D in that order.
It was clear that just SSP, even for 500K environment steps,
was not enough to learn this stitching. To that end, we could
fine-tune SAC-N -GMM, which is pre-trained with SSP
first. Figure 5 compares how fine-tuning SAC-N -GMM on
specific tasks with sparse task-completion rewards after pre-
training with SSP helps improve performance on BDCA
and ACBD.

5.3. Does SAC-N-GMM scale well?

We evaluate SAC-N -GMM’s ability to scale in terms
of the number of skills to refine and stitch and the num-
ber of environmental steps. To that end, we introduce three
new CALVIN’s Env D skills - Close Drawer (A’), Turn Off
Lightbulb (B’) and Move Slider Right (C’)4. The environ-
ment signals a sparse skill-completion reward – for A’ when
the drawer is closed at least 12 cm from its initial position,
for B’ when the lightbulb turns off, for C’ when the slider
moves 15 cm to the right from its initial position.

Figure 7 shows that SAC-N -GMM outperforms the
strongest baseline (N -SAC-GMM) across four arbitrarily

4Note that we intentionally refrain from adding Turn Off LED skill as
it has exactly identical geometry to Turn On LED (D) skill.

6

Figure 4. Main Results: SAC-N -GMM vs baseline methods for all eight tasks.

Figure 5. SAC-N -GMM with only 500K of SSP vs SAC-N -GMM
with 250K of SSP and Fine-tuning of 250K environment steps.

Figure 6. SAC-N -GMM with and without Quaternion Refinement

chosen seven-skill tasks. We can also see that, with in-
creased environment steps, SAC-N -GMM’s performance
also increases, displaying stable refinement ability with
scale in skills and steps.

Figure 7. SAC-N -GMM on seven skills

6. Limitations and Future Work

Despite strong task performance, SAC-N -GMM suffers
from a few unavoidable drawbacks. Firstly, SAC-N -GMM
expects expert demos to train RM-GMMs in Phase I, this
can be particularly expensive for some environments. Sec-
ondly, despite the ability to explore in Phase II, SAC-N -
GMM’s diversity in exploratory behaviour is rather lim-
ited compared to other end-to-end RL methods. While this
makes it suitable for real robots where exploration is ran-
dom and unrealistic, it could limit SAC-N -GMM’s appli-
cation space. Using geometric skills in Phase I also hinders
SAC-N -GMM’s ability to tackle skills that involve diverse
behaviours like pick-place of objects in complex environ-
ments.

SAC-N -GMM also demands a stable geometric skill-
learning library like [11]. Before fully adopting [11]’s of-
ficial implementation, we spent hundreds of hours making
RM-GMMs work with CALVIN skills. Moreover, our pro-
posed quaternion refinement update rule, despite being sta-
ble and intuitive, is an ad-hoc approach with no theoretical
guarantees. Recent attempts to address this using Wasser-
stein Gradient Flows [12] may be a good future work to
change this.

7

7. Conclusion
In this work, we present SAC-N -GMM, a robot learning

framework to refine and sequence multiple robot skills to
perform tasks. This hybrid model combines data-efficient,
robust Riemannian manifold dynamical systems with flexi-
ble, high-dimensional deep RL. Extensive experiments and
ablations in the CALVIN simulator show that our proposed
method (1) learns a single RL agent to refine and sequence
multiple robot skills through physical interactions, (2) re-
fines not just robot positions but also robot orientations, (3)
performs significantly better sample efficiently than several
model-based RL baselines.

References
[1] Tuomas Haarnoja, Aurick Zhou, P. Abbeel, and Sergey

Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. ArXiv,
abs/1801.01290, 2018. 3

[2] Danijar Hafner, J. Pavs.ukonis, Jimmy Ba, and Timothy P.
Lillicrap. Mastering diverse domains through world models.
ArXiv, abs/2301.04104, 2023. 5

[3] Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal
difference learning for model predictive control. In Interna-
tional Conference on Machine Learning, 2022. 5

[4] Seyed Mohammad Khansari-Zadeh and Aude Billard.
Learning stable nonlinear dynamical systems with gaussian
mixture models. IEEE Transactions on Robotics, 27:943–
957, 2011. 3

[5] Corey Lynch, Mohi Khansari, Ted Xiao, Vikash Kumar,
Jonathan Tompson, Sergey Levine, and Pierre Sermanet.
Learning latent plans from play. CoRR, abs/1903.01973,
2019. 2

[6] Oier Mees, Lukás Hermann, Erick Rosete-Beas, and Wol-
fram Burgard. Calvin: A benchmark for language-
conditioned policy learning for long-horizon robot manipu-
lation tasks. IEEE Robotics and Automation Letters, 7:7327–
7334, 2021. 5

[7] William Montgomery, Anurag Ajay, Chelsea Finn, Pieter
Abbeel, and Sergey Levine. Reset-free guided policy search:
Efficient deep reinforcement learning with stochastic initial
states. In 2017 IEEE International Conference on Robotics
and Automation (ICRA), pages 3373–3380, 2017. 5

[8] Iman Nematollahi, Erick Rosete-Beas, Adrian Röfer, Tim
Welschehold, Abhinav Valada, and Wolfram Burgard. Robot
skill adaptation via soft actor-critic gaussian mixture models.
2022 International Conference on Robotics and Automation
(ICRA), pages 8651–8657, 2021. 1, 3

[9] J Schulman. Deep reinforcement learning. https://www.
youtube.com/watch?v=aUrX-rPss4, 2016. 5

[10] Lu Shi, Joseph J. Lim, and Youngwoon Lee. Skill-
based model-based reinforcement learning. CoRL,
abs/2207.07560, 2022. 5

[11] Martijn J. A. Zeestraten, Ioannis Havoutis, João Silvério,
Sylvain Calinon, and Darwin Gordon Caldwell. An ap-
proach for imitation learning on riemannian manifolds. IEEE

Robotics and Automation Letters, 2:1240–1247, 2017. 2, 3,
4, 5, 7

[12] Hanna Ziesche and Leonel Dario Rozo. Wasserstein gradi-
ent flows for optimizing gaussian mixture policies. NeurIPS,
abs/2305.10411, 2023. 7

8

https://www.youtube.com/watch?v=aUrX-rP ss4
https://www.youtube.com/watch?v=aUrX-rP ss4

	. Introduction & Related Works
	. Preliminaries
	. SAC-N-GMM
	. Experiments
	. Setup
	. Baselines
	. Results

	. Ablations
	. Role of SSP and Quaternion Refinement
	. Task-Specific Fine-Tuning
	. Does SAC-N-GMM scale well?

	. Limitations and Future Work
	. Conclusion

